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Abstract. The Manhattan lattice is the covering lattice of the L lattice, and we have 
studied self-avoiding walks on this pair of lattices. Upper and lower bounds on the 
connective constant ( P )  have been obtained, as havo series analysis estimates. We find that 

1.5353<p = 1.5658*0.0010< 1.5986 (L lattice) 

and 

1 . 6 3 3 6 1 ~  = 1.7340;t0.0015< 1.7912 (Manhattan). 

1. Introduction 

We have studied self-avoiding random walks (SAWS) on a pair of related lattices, both 
being restrictions of the square lattice. The lattices are the Manhattan lattice and the 
L lattice, and these are illustrated in figure 1. The Manhattan lattice has alternate 
rows (or columns) parallel, and adjacent rows (or columns) antiparallel, while the L 
lattice has the property that each bond on a path must be at right angles to its 
predecessor. 

1 b l  

Figure 1. ( a )  Manhattan lattice, ( b )  L lattice. 

As a consequence, SAWS on the L lattice may be viewed as a concatenation of L 
shaped, two-step, walks. This latter lattice has been variously named in the literature 
as the two-choice 90" lattice (Wall et a1 1955) and the underlying lattice of the 
Manhattan square lattice (Kasteleyn 1963), but we prefer the simpler notation of the 
L lattice. 

Self-avoiding walks on these lattices are of particular interest for several reasons. 
Firstly, as pointed out by Kasteleyn (1963), the Manhattan graph (lattice) is the 
covering of the L graph, and the L graph is the only closed, oriented, square lattice 
whose covering is a closed, oriented square lattice. This observation led Kasteleyn 
to prove that the number of Hamiltonian cycles, N H ,  on the P-site closed Manhattan 
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lattice (with periodic boundary conditions) was given by 

N H ( P )  = CA '[ 1 + O(P-" )] (1.1) 

where A = exp(g / r )  = 1.3381 , . . , and g = Catalan's constant. The asymptotic form 
( 1 . 1 )  was in fact found by Barber, who showed that C = 2(&328384)4'3 = 
0.696 60 , , , where 8, = 8,(0, e-") is an elliptic theta function, and 0 < a  < 1. Note that 
this asymptotic behaviour is different to, and indeed simpler than, that expected to 
prevail for SAWS. In that case, it is believed that C, - Ap "n ', where c, is the cardinality 
of n-step SAWS and g = y - 1 > O .  For the L lattice Malakis (1975) numerically 
estimated the number of Hamiltonian cycles for that lattice (with different boundary 
conditions) and found N H ( P )  - A  f with A L  = 1 .  

Secondly, Nienhuis (1982) has recently obtained the exact connective constant for 
the SAW problem on the honeycomb lattice, and has given convincing arguments to 
suggest that the growth exponent g, defined above, is exactly E. Nienhuis's technique 
is restricted in its application to those lattices for which the graphs contributing to 
the zero field free-energy are disconnected polygons. This in effect restricts the 
coordination number to three, so that Nienhuis's technique might be applicable to 
the Manhattan and L lattices. Note that there is no known proof that the exponent 
g for the L and Manhattan lattices should be the same as that for the unrestricted 
square lattice, but universality suggests strongly that this should be so. Malakis (1975) 
has also discussed this point, and gives several arguments, as well as numerical evidence, 
in support of this belief. We subsequently study the relevant series but for the moment 
assert that this equality can be assumed with a fair degree of confidence. 

The third reason that these lattices are particularly interesting relates to the 
proof by Hammersley and Welsh (1962) that 

c, - A p  exp(O(Jn)). 

The growth term, exp(O(&)), is derived by an unfolding transformation and follows 
from the number of unequal partitions of the integers. For these restricted square 
lattices, and particularly the L lattice, the number of such transformations is far fewer, 
and it is to be hoped that a careful study of unfolding transformations on these lattices 
might enable the term exp(O(4n)) to be sharpened, so that it may approach more 
closely the widely believed result exp(O(1og n ) ) .  At the time of writing, however, we 
have only been able to sharpen the constant multiplying the n 1'2 term. 

In the remainder of this paper we establish quite tight rigorous bounds on the 
connective constant for the L lattice, weaker bounds for the Manhattan lattice, and 
numerical estimates for these quantities. 

The lower bounds are found by extending a theorem of Kesten (1963), so that it 
applies to non-regular lattices, and then enumerating a subset of SAWS (bridges) as 
defined in 8 2. Upper bounds are obtained by the method of Fisher and Sykes (1959) 
and by a simple extension of a method due to Ahlberg and Janson (1982). 

2. Lower bounds 

Kesten's theorem for lower bounds applies to the general d-dimensional (d  2 2) 
hypercubic lattice, but for our purposes we will discuss only the two-dimensional case. 
Consider the square lattice to be the integer points of a Cartesian coordinate system. 
We denote by r, the set of n-step SAWS with origin given by the origin of the coordinate 
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system, while cn denotes the cardinality of the set. Then the set B,, denoting n-step 
bridges with cardinality b,, is defined as a subset of r, such that members of B, satisfy 

0 = X o ( c n  <Xi (cn 1 s X n  (Cn 1, l s i s n ,  

where X l ( c n )  is the X coordinate of the ith monomer in the particular n-step SAW c,. 
Thus B, c r, and 6 ,  s cn. These walks can be visualised as the set of SAWS whose X 
coordinates are all strictly positive (beyond the origin point) and whose end point has 
maximal (but not necessarily unique) X coordinate. The set .An of irreducible bridges, 
with cardinality A,,, can be defined as a subset of the bridges satisfying the additional 
constraint that no k < n exists for which 0 <Xi(cn) s X k ( C n )  <Xj(cn)  sXn(cn) for all i 
and j such that 0 < i s k < j s n.  Irreducible bridges are therefore those bridges which 
cannot be viewed as the concatenation of two bridges. 

In terms of these definitions, Kesten (1963) proved the lemma 

n = 1 , 2 , .  . . , 
h = l  

and consequently for /x 1 < 1 /g ,  

1 00 

B ( x ) =  b,x"=-----  
n = O  1 - A(x) 

where 

Further, Kesten proved that the connective constant ,U can be obtained from the 
result that k- '  is the unique positive root of A ( x )  = 1, and hence lower bounds on k 
can be obtained from the solution of the polynomial equation 

whose unique, positive root satisfies j~~ s k .  These results of Kesten cannot be directly 
applied to the L or the Manhattan lattice, due to their non-regular nature, but the 
following result can be obtained. Firstly observe that the first step of any bridge is 
horizontal. Now divide bridges into two classes. Members of class A have an odd 
number of steps while members of class B have an even number of steps. We use 
the notation of the previous paragraphs with superscripts A and B denoting the two 
classes. The analogue of Kesten's lemma for the L lattice only is then 

n l 2  
b: = h:kb:-Zk n = 2 , 4 , 6 , .  . . 

k = l  
(2.52) 

[ d 2 1  A 

(2 .56)  

The proof of this lemma follows, mutatis mutandis, from Kesten's proof for the general 
hypercubic lattice. From those results follow 

A bn = 1 A~kt1bZ-2k-1 n = l , 3 , . 5  , . . . .  
k = O  

1 X 

B ' ( X ) =  b ~ , , x z "  = 
n = O  1 - AB(x) ( 2 . 6 ~ )  
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2 n + l  - AA(X) B A ( x ) =  6;n+lx - 
W 

n = O  1 - AB(x) 
(2.66) 

A cc where b o = l ,  A ( x ) = C ~ = ~ A ~ , , + ~ X ~ " + ~  and A B ( ~ ) = Z ~ = l A ~ , , ~ 2 n .  Adding ( 2 . 6 ~ )  and 
(2.66) gives the fundamental equation 

B ( x ) = ( 1 - A A ( x ) ) / ( 1 - A B ( ~ ) ) .  (2.7) 

The connective constant, F,  can be obtained from the result that F ~ - ~  is the unique, 
positive root of AB (x) = 1, and hence lower bounds on p can be obtained from the 
solution of the polynomial equation 

N 

n = l  
1 = 1 

whose unique, positive root satisfies F N  S p.  
In order to utilise these results, we have generated all bridges up to and including 

those of 30 steps. This was done by generating all walks up to 30 steps, and identifying 
bridges from the walks. 

B (x)/x = 1 + 2x + 2x2 + 4x3 + 4x4 + 8x + l o x 6  + 18x7 + 22x8 +40x9 + 50x lo + 90x l1 

In this way the bridge generating function was found to be 

+ 116x'2+210x13+268x14+486x15+628x16+ 1140xI7+ 1 4 7 4 ~ ' ~  

+ 2684x l9  + 3474x2'+ 6328x 2 1  + 8210x 22  + 14 9 7 6 ~ ~ ~  + 19 484x 24 

+ 3 5  564x2'+46 2 7 8 ~ ~ ~ + 8 4  5 3 2 ~ ~ ~ +  110 2 3 8 ~ ~ ~ + 2 0 1 4 4 8 x ~ ~  

+263 O ~ O X ~ ~ + .  . . . (2.9) 

Using ( 2 . 6 ~ )  we obtained the irreducible bridge generating function for class B bridges, 
AB(x), which was 

AB(x) = 2x2 + 2xs + 2x l 2  + l o x  l4 + 2x l 6  + 28x + 44x20 + 64x2' + 2 0 4 ~ ' ~  

+ 4 1 2 ~ ~ ~ + 7 2 0 x ~ ~ + 2 0 1 6 x ~ ~ + .  . . . (2.10) 

Numerical solution of the polynomial AB(x) = 1 gives the bound p > 1.5353. For the 
Manhattan lattice we find that the fundamental equation (2.7) holds with superscripts 
A and B reversed. That is, 

B(x)= (1 +AB(x ) ) / ( l  -AA(x)). (2.11) 

Hence a lower bound is identified with the unique positive root of the polynomial 

(2.12) 

Primitive enumeration by hand gives the first few coefficients of AA as AA(x)=  
x + x 3 + x 5 + x 7 + 2 x 9 + .  . . . Equation (2.12) then gives the bound p > 1.6217. 
Automating the counting procedure would enable this bound to be sharpened con- 
siderably, but having demonstrated the method for the L lattice, we have not proceeded 
with the enumerations for the Manhattan lattice. Nevertheless, a slight improvement 
is possible by observing that, since A?n-l  3 0  for all n a 1, the polynomial (2.12) with 
A 2 n - 1  replaced,by A 2*n-1 where A Tn- l  satisfies 0 S A  Tn-l S A  2 n - l  also provides a lower 
bound. Then thsobservation that h t n - l  a 1 (equality is achieved by considering 

A A 
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the irreducible bridge whose first step is to the right and all of whose subsequent 
steps are in the y direction) means that we can write A*(X)*X + 
x 3 + ~ 5 + ~ 7 + 2 x 9 + ~ 1 1 + x 1 3 + ~ 1 5 + .  , .=x / (1 -x2)+x9,  for x 2 0  and equating the 
right-hand side to unity gives the bound p > 1.6272. Finally the observation that 
h f1 3 improves this bound to p > 1.6336. 

3. Upper bounds 

We have used two methods to obtain upper bounds. The first method, due to Wakefield 
(1951) and subsequently extensively used by Fisher and Sykes (1959), consists of 
generating the set of random walks with the restriction that closures of less than k 
steps are forbidden. For finite k the problem is now Markovian in nature, and in the 
limit of large k it reduces to the SAW problem. Denoting the number of such restricted 
random walks as cLk), it is clear that cLk) a c n ,  where cn is, as before, the number of 
n-step SAWS and 

1 1 
iim -In cLk’ > lim -In cn = In p.  
n-m n n-m n (3.1) 

As the problem is Markovian, the left-hand limit can be evaluated exactly, and upper 
bounds obtained. Following Fisher and Sykes, and making modifications appropriate 
to the peculiarities of the L lattice, the elimination of four-step closures (squares) 
gives rise to a 3 x 3 matrix the unique positive eigenvalue of which is :(1+ d5)  = 
1.618.. , , so that p s 1.618.. . . This is quite a good bound, as the topology of the 
lattice ensures that the next smallest closure can only occur at 12 steps. The resulting 
15 x 15 matrix has as its largest eigenvalue 1.611, and so p s 1.611, an improvement 
over the earlier result of less than $ O h .  

An alternative method makes use of an inequality given by Ahlberg and Janson 
(1982). Following them, we make the following definition. If y E rk, where k s n, let 
c,’ denote the number of SAWS (of length n )  that begin with y. That is, y is the first 
k steps of the n-step SAW c:. Then 

(3.2) 

Now let m, n 2 k .  Any path of length m + n - k can be considered as two SAWS, one 
of length m and one of length n, overlapping for k steps. Sorting all walks in r m + n - k  

according to the overlapping part, Ahlberg and Janson obtain the important inequality 

where y* is y reversed. Now for the L lattice, and the honeycomb lattice (but not 
the Manhattan lattice or most other lattices), all two-step SAWS are identical. That 
is, r2 consists of c2 = 4 identical paths (for the L lattice), all of which are L shaped 
paths. Thus if y = r2 we have c i  = cn/c2 and the above inequality becomes 

cm+n-z<E cncm Y Y *  - -cncm/cZ. 
r2 

To proceed further, we use a theorem on sub-additive functions due to Wilker and 
Whittington (1979). 
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Theorem. If b, vb, a b , , + f c m ,  for a positive function f satisfying lim,,,f(m)/m = 1, 
then p = 

Application of this theorem then gives the result (with f ( m )  = m - 2) that p s 
(C“/CZ)1’(n-2) . Very recently Grassberger (1982) has extended the SAW series for the 
L lattice. His highest coefficient is c44/4 = 360 311 379 giving the bound p s 1.5986. 
For the honeycomb lattice we have c34 = 4 531 816 950, which gives the bound 
p < 1.8943 in agreement with Ahlberg and Janson. (The exact result is p = 
1.847 7 5 9 . .  . (Nienhuis 1982).) For the Manhattan lattice, the two-step walks are 
not symmetric, and we use the weaker inequality p s (c,,/cl)l’(“-l) plus the coefficient 
c28 = 13 687 192 (Malakis 1975) to obtain the bound CL < 1.7912. 

n-l  In 6 ,  and 6 , 3 p f ( n ) .  

4. Series analysis 

We have reanalysed the longest extant series for the Manhattan lattice (Malakis 1975) 
and analysed the series given by Grassberger (1982) for the L lattice. It is known 
from studies of the Ising model that series on low coordination number lattices, such 
as the honeycomb, display a four-term periodicity in their ratios, due to the presence 
of four singularities at *U, and *iuc, where uc = tanh(J/kTc). For the SAW problem 
on the honeycomb lattice the series behave similarly, and Guttmann and Whittington 
(1978) have shown that a singularity at - l /p can be expected as well as the physical 
singularity at 1/p. While we have not been able to establish the presence of singu- 
larities at f i / p ,  the series behaviour leads us to believe that a conjugate pair of 
singularities does exist at a position close to *i/p. Preliminary analysis of the 
Manhattan and L lattice series also shows evidence of a four-term periodicity among 
the coefficients (particularly evident in Dlog Pad6 approximants) and we have analysed 
the series accordingly. If we form the ratios of every fourth term, and take the fourth 
root of that ratio, we obtain four distinct sequences each of which should converge 
to p.  That is, we define 

Each sequence { r i p ’ }  is then extrapolated linearly and quadratically by forming 
linear extrapolants lip’ = nr?’ - (n - l)r:Ll and quadratic extrapolants 4:) = 
y[nf:’ - (n - 2)[!,?1]. 

We illustrate the method in table 1 below for the honeycomb lattice. Focusing 
on the latter entries in the table, we see that the ratios r r ’  are uniformly decreasing, 
the linear extrapolants with the exception of f!,” are also uniformly decreasing, while 
the quadratic extrapolants 4:’) and 4;’’ are increasing towards the known limit of 
1.847 7 5 9 .  . . , while 4:’) and 4L3’ are decreasing towards this limit. Averaging the 
last two entries of sip’, a = 0 ,  1 ,  2, 3, we obtain 1.847 71 and quote confidence limits 
of *0.0009, which estimate contains all the last eight quadratic extrapolants used in 
the averaging. 

For the Manhattan lattice, we obtained the results shown in table 2. Again the 
ratios r:’ are monotonically decreasing, but the linear extrapolants I!,’’ and I!,’’ are 
increasing, while lL2’ and fL3) are decreasing. These trends alone, if bounding, yield 
1.7331 < 1.7347. The central value of 1.7340 is well supported by the quadratic 
extrapolants, and we estimate 

1 

@Manhatfan = 1.7340* O.CO1.5. 
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This may be compared with the earlier estimates of both Barber (1970) and Malakis 
(1975) of 1.733*0.003. 

For the L lattice, our results are shown in table 3. These data are particularly well 
behaved, and both the ratios r)p’ and the linear extrapolants 1:’ have ‘settled down’, 
and allow us to estimate 

pL= 1.5658*0.0010. 

Malakis’s earlier estimate, based on a shorter series, was pL = 1.559 * 0.003, which 
we therefore consider unacceptably low. 

We have also studied the above series by conventional Pade analysis methods. 
Firstly, Pad6 approximants to the logarithmic derivative of the SAW generating function 
were formed, and in order to save space we merely quote the results of an extensive 
series of tables. These give unbiased, simultaneous estimates of both p and the critical 
exponent y. For the honeycomb lattice, the approximants of the 34-term series appear 
to ‘settle down’ beyond the 27th term to yield p = 1.8478*0.0002 and y = 
1.341 f 0.003, in agreement with Nienhuis’s exact results of p = 1.847 759 . . . and 
y = 1.343 75. For the Manhattan lattice we only have 28 terms, yet the approximants 
appear to ‘settle down’ beyond the 22nd term and suggest values of p = 
1.7339*0.0002 and y = 1.321*0.003. This critical point is in agreement with that 
found by ratio analysis, but the exponent is not in agreement with the value y = 
1.343 75 claimed by Nienhuis to be exact for the honeycomb lattice. This suggests 
that either universality is violated, and that this non-regular lattice has a different 
exponent to the regular honeycomb lattice, or that the series is too short to display 
asymptotic behaviour. At this stage we incline strongly to the latter view. This view 
is reinforced by Pad6 analyses of other regular lattices, notably the square and 
triangular, which suggest values of y of around 1.33, that is, midway between those 
found for the honeycomb and Manhattan lattice. It would be astonishing, if, say, the 
square and honeycomb lattice SAW generating function displayed different exponents, 
and accordingly we are led to the conclusion that the series are too short to display 
asymptotic behaviour. Examination of regular two-dimensional SAW series supports 
this view (Guttmann 1983) in that the diagonal and off-diagonal Pad6 approximants 
appear to converge in blocks. For example, the honeycomb lattice approximants at 
first appear to converge to ( 1 / p ,  y )  = (0.5410,1.333), while higher-order approximants 
then settle down to the more accurate values of (0.541 18, 1.342). 

Further, studies of king model and related series lead to the observation that any 
variation of homogeneous conditions usually slows down the rate of convergence of 
any extrapolation scheme. This also appears to have been the case here, where the 
lattices under consideration are non-regular. 

Unfortunately, numerical difficulties have prevented us from obtaining Dlog Pade 
approximants for the L lattice. However, we have used the estimates of p obtained 
by the ratio method in order to estimate y by the usual technique of forming Pad6 
approximants to (x, -x)(d/dx) ln(f(x))l.=,c = 1 /p ,  wheref is the SAW generating func- 
tion. The results of this exercise suggest that y = 1.320 (Manhattan), y = 1.343 
(honeycomb) and y = 1.350 (L lattice). 

Finally, if we assume that y = 1g for all two-dimensional lattices and form Pad6 
approximants to [ f ( ~ ) ] ” ~ ,  which approximants should have poles at x = l/p, we find 
p = 1.733 (Manhattan), p = 1.8479 (honeycomb) and p = 1.5659 (L lattice). (For 
both the Manhattan and L lattice overflow problems prevented all series coefficients 
from being used.) 
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The Pade results are therefore quite consistent with the ratio method estimates, 
the only disturbing feature being the apparent variation of exponent estimates with 
lattice, which we believe is an artifact of short series. Accordingly, it would be most 
valuable to extend the available series by several terms-both for the lattices con- 
sidered here, and for the triangular and square lattices. 

5. Conclusion 

We have generalised Kesten’s lemma to apply to non-regular two-dimensional lattices, 
and used both that extension and an application of Ahlberg and Janson’s inequality 
to obtain the best extant upper and lower bounds on the connective constant of the 
Manhattan and L lattices. 

Analyses of series expansions have given numerical estimates of these quantities, 
and our results may be summarised as 

1.5353 < p  = 1.565 75 *0.0005 < 1.5986 (L lattice) 

and 

1.6336<p = 1.7340*0.0009< 1.7912 (Manhattan rattice). 
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